CSE 332 INTRODUCTION TO VISUALIZATION

VISUAL DESIGN & AESTHETICS

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

Lecture	Торіс	Projects
1	Intro, schedule, and logistics	
2	Applications of visual analytics, data, and basic tasks	
3	Data preparation and reduction	Project 1 out
4	Data preparation and reduction	
5	Data reduction and similarity metrics	
6	Dimension reduction	
7	Introduction to D3	Project 2 out
8	Bias in visualization	
9	Perception and cognition	
10	Visual design and aesthetics	
11	Cluster and pattern analysis	
12	High-Dimensional data visualization: linear methods	Project 3 out
13	High-D data vis.: non-linear methods, categorical data	
14	Computer graphics and volume rendering	
15	Techniques to visualize spatial (3D) data	
16	Scientific and medical visualization	
17	Scientific and medical visualization	
18	Non-photorealistic rendering	Project 4 out
19	Midterm	
20	Principles of interaction	
21	Visual analytics and the visual sense making process	
22	Visualization of graphs and hierarchies	
23	Visualization of text data	Project 5 out
24	Visualization of time-varying and time-series data	
25	Memorable visualizations, visual embellishments	
26	Evaluation and user studies	
27	Narrative visualization and storytelling	
28	Data journalism	

THREE KEY VISUAL REPRESENTATIONS

Gestalt Principles:

 the tendency to perceive elements as belonging to a group, based on certain visual properties

Pre-attentiveness:

 certain low level visual aspects are recognized before conscious awareness

Visual variables:

the different visual aspects that can be used to encode information

Gestalt

Concept of totality

you grasp the "totality" of something before worrying about the details

PRE-ATTENTIVENESS

Also called pop-out (multiple conjunctions shown here):

WHICH POPPED-OUT FASTER

Color (red vs. green) Shape (circle vs. square)

VISUAL VARIABLES

Formal theory linking perception to visualization Established by Jacques Bertin (1967)

- he called it 'Image Theory'
- original book in French (*Sémiologie Graphique*) translated into English by W. Berg (1983)
- not formally linked to vision research more based on intuition
- but has been shown later by M. Green to be quite accurate

VISUAL VARIABLES

130 Two planar variables 120 110 spatial dimensions 100 Arm Strength 90 80 map (arm, grip) to (x,y) 70 60 50 40 30 -20 -Six retinal variables 160 180 200 20 40 60 120 140 100 Grip Strength size Scatterplot - Different Symbols " 98 color Nonionized 밈 6 П Ionized (> 50%) 80 shape 30 d Bol orientation 0 texture -2 brightness 2000 3000 4000 5000 0 100 400 200 300 500 60 weight MW 0001 foreion

Retinal variables allow for one more variable to be encoded

- more than three variables will hamper efficient visual search
- recall low decoding speed of conjunctions

VISUAL SEARCH

Find the orange square

Left: just color (pre-attentive, no visual search needed) Right: color and shape (requires visual search)

ASSOCIATIVE VS. SELECTIVE

Both are nominal qualities

Associative

- lowest organizational level
- enables visual grouping of all elements of a variable

- next lowest level
- enables viewer to isolate encoded data and ignore others

Matplot scatter plo

••• coffee

•• water

•• tea

0.4

VISUAL VARIABLE #1 – PLANAR

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #1 – PLANAR

Visual property	Can convey
Associative	Y
Selective	Y
Ordered	Y
Quantitative	Y

VISUAL VARIABLE #2 – SIZE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #2 – SIZE

Visual property	Can convey
Associative	Y
Selective	Y
Ordered	Y
Quantitative	(Y)

VISUAL VARIABLE #3 – BRIGHTNESS

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #3 – BRIGHTNESS

Visual property	Can convey
Associative	Y
Selective	Υ
Ordered	Υ
Quantitative	
Selective Ordered Quantitative	Y Y

VISUAL VARIABLE #4 – TEXTURE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #4 – TEXTURE

Visual property	Can convey
Associative	Y
Selective	Y
Ordered	
Quantitative	

VISUAL VARIABLE #4 - COLOR

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #4 - COLOR

Visual property	Can convey
Associative	Y
Selective	Y
Ordered	
Quantitative	

VISUAL VARIABLE #5 - ORIENTATION

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #5 - ORIENTATION

Visual property	Can convey
Associative	(Y)
Selective	(Y)
Ordered	
Quantitative	

VISUAL VARIABLE #6 – SHAPE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #6 – SHAPE

Visual property	Can convey
Associative	(Y)
Selective	(Y)
Ordered	
Quantitative	

LEVELS OF ORGANIZATION

Visual variables differ in what data properties they can convey

	Associative	Selective	Ordered	Quantitative
Planar	yes	yes	yes	yes
Size	yes	yes	yes	(yes)
Brightness (Value)	yes	yes	yes	
Texture	yes	yes		
Color (Hue)	yes	yes		
Orientation	(yes)	(yes)		
Shape	(yes)	(yes)		

TAKE-AWAYS (1)

Planar variable is the single most strongest visual variable

- maps to proximity
- provides an intuitive organization of information
- things close together are perceptually grouped together

TYPICAL WE	EB FORM
	Personal Information
	First Name
	Last Name
	Contact Information
-	Address
	Ciby
	County Select County
· · · · · · · · · · · · · · · · · · ·	Post Code Country United Kingdom
	Submit Cancel
	CTION SECONDARY ACTION

TAKE-AWAYS (2)

Size and brightness are good secondary visual variables to encode relative magnitude

size appeals to spatial perceptive channels

What are the advantages and disadvantages of brightness

- + brightness does not consume extra space (bigger disks do)
- brightness depends on environmental lighting (size does not)
 where do you view the visualization (office, outdoors, night or day?)

brightness

TAKE-AWAYS (3)

Color is a good visual variable for labeling

texture can do this as well, but it does not support pop-out much

texture pop-out?

 \Box \Box

color pop-out

TAKE AWAYS (4)

Shape provides only limited pop-out

- compare with color pop-out on the previous slide
- another example: coloring of graphs

Background with same-colored object at the same brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at similar brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at lower brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at higher brightness

- can you see the shape?
- can you count the number of gaps?

WHAT DID WE LEARN FROM THAT EXPERIMENT?

Color is for ...

Brightness (intensity, luminance) is for ...

ROLE OF SATURATION

Art & Money By: JeanAbbiateci

S	ORTING
0	year by year
0	top 10 artworks
0	men / women
0	dead / alive
0	by nationality
0	best-selling artists
0	auction houses
0	size of artworks
0	date of creation (all centuries)

COLOR TAGGING FOR IMPORTANCE

Which is the most important structure in each (as intended by the author)

HOW ABOUT AESTHETICS?

Which one do people like better?

perceived importance level of red object is the same

Vis 1

Vis 2

aesthetics

COLOR CODING AND COLORMAPS

- Color coding
 - large areas: low saturation
 - small areas: high saturation
 - maintain luminance contrast
 - break iso-luminances with borders

SPIRAL THROUGH COLOR SPACE

Varies hue and intensity at the same time

shown here: CIE Lab color space

THE RAINBOW COLORMAP

As we saw, colors can add detail information to a visualization

instead of 256 levels get 256³ = 16,777,216

Oftentimes you have a visualization with just one variable

- this would give you a grey level image
- how to turn this into a color image for better detail

Solution 1:

• map to hue \rightarrow the rainbow colormap

can you see all adjacent colors at the same contrast?

AVOID RAINBOW COLORMAPS

BETTER: LINEAR HUE

Moreland's Diverging Colormaps

Algorithmically generated

- all have the same midpoint value (0.865, 0.865, 0.865)
- begin and end point listed here

https://www.kennethmoreland.com/color-maps/

BREWER SCALES

Nominal scales

distinct hues, but similar emphasis

Sequential scales

- vary in lightness and saturation
- vary slightly in hue

Diverging scale

- complementary sequential scales
- neutral at "zero"

http://colorbrewer2.org/

COLOR BREWER

OPPONENT COLOR

Opponent colors do not mix

- can only see one of the opponents
- there is no blueish yellow
- there is no reddish green

COLOR BLINDNESS

Most common is deficiency in distinguishing red and green

FORMS OF COLOR BLINDNESS

green missing

blue missing (rare)

red missing

normal

protanopia

LINE CHARTS

DESIGNING FOR COLOR DEFICIENT USERS

8% (0.5%) of US males (females) are color deficient

so be careful when designing visualizations

What to do?

- use different intensities for red-green (e.g. light green, dark red)
- space red and green colored colors dots far apart or make large
- add symbols to line charts
- avoid using gradient colors to indicate data value

SUMMING UP

Use Luminance for detail, shape, and form Use color for coding – few colors Use strong colors for small areas Use subtle colors to code large areas

Visualization artistry:

 Use of luminance to indicate direction

